3.2902 \(\int \frac{\sqrt{2+3 x} (3+5 x)^{3/2}}{(1-2 x)^{3/2}} \, dx\)

Optimal. Leaf size=126 \[ \frac{2}{3} \sqrt{\frac{11}{3}} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ),\frac{35}{33}\right )+\frac{\sqrt{3 x+2} (5 x+3)^{3/2}}{\sqrt{1-2 x}}+\frac{10}{3} \sqrt{1-2 x} \sqrt{3 x+2} \sqrt{5 x+3}+\frac{133}{6} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

[Out]

(10*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/3 + (Sqrt[2 + 3*x]*(3 + 5*x)^(3/2))/Sqrt[1 - 2*x] + (133*Sqrt[1
1/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/6 + (2*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 -
2*x]], 35/33])/3

________________________________________________________________________________________

Rubi [A]  time = 0.0355012, antiderivative size = 126, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {97, 154, 158, 113, 119} \[ \frac{\sqrt{3 x+2} (5 x+3)^{3/2}}{\sqrt{1-2 x}}+\frac{10}{3} \sqrt{1-2 x} \sqrt{3 x+2} \sqrt{5 x+3}+\frac{2}{3} \sqrt{\frac{11}{3}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )+\frac{133}{6} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[2 + 3*x]*(3 + 5*x)^(3/2))/(1 - 2*x)^(3/2),x]

[Out]

(10*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/3 + (Sqrt[2 + 3*x]*(3 + 5*x)^(3/2))/Sqrt[1 - 2*x] + (133*Sqrt[1
1/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/6 + (2*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 -
2*x]], 35/33])/3

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rubi steps

\begin{align*} \int \frac{\sqrt{2+3 x} (3+5 x)^{3/2}}{(1-2 x)^{3/2}} \, dx &=\frac{\sqrt{2+3 x} (3+5 x)^{3/2}}{\sqrt{1-2 x}}-\int \frac{\sqrt{3+5 x} \left (\frac{39}{2}+30 x\right )}{\sqrt{1-2 x} \sqrt{2+3 x}} \, dx\\ &=\frac{10}{3} \sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}+\frac{\sqrt{2+3 x} (3+5 x)^{3/2}}{\sqrt{1-2 x}}+\frac{1}{9} \int \frac{-\frac{1263}{2}-\frac{1995 x}{2}}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\\ &=\frac{10}{3} \sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}+\frac{\sqrt{2+3 x} (3+5 x)^{3/2}}{\sqrt{1-2 x}}-\frac{11}{3} \int \frac{1}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx-\frac{133}{6} \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x} \sqrt{2+3 x}} \, dx\\ &=\frac{10}{3} \sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}+\frac{\sqrt{2+3 x} (3+5 x)^{3/2}}{\sqrt{1-2 x}}+\frac{133}{6} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )+\frac{2}{3} \sqrt{\frac{11}{3}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )\\ \end{align*}

Mathematica [A]  time = 0.152806, size = 105, normalized size = 0.83 \[ \frac{67 \sqrt{2-4 x} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right ),-\frac{33}{2}\right )+6 \sqrt{3 x+2} \sqrt{5 x+3} (19-5 x)-133 \sqrt{2-4 x} E\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )|-\frac{33}{2}\right )}{18 \sqrt{1-2 x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[2 + 3*x]*(3 + 5*x)^(3/2))/(1 - 2*x)^(3/2),x]

[Out]

(6*(19 - 5*x)*Sqrt[2 + 3*x]*Sqrt[3 + 5*x] - 133*Sqrt[2 - 4*x]*EllipticE[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/
2] + 67*Sqrt[2 - 4*x]*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2])/(18*Sqrt[1 - 2*x])

________________________________________________________________________________________

Maple [C]  time = 0.016, size = 140, normalized size = 1.1 \begin{align*} -{\frac{1}{540\,{x}^{3}+414\,{x}^{2}-126\,x-108}\sqrt{1-2\,x}\sqrt{2+3\,x}\sqrt{3+5\,x} \left ( 67\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) -133\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) -450\,{x}^{3}+1140\,{x}^{2}+1986\,x+684 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3+5*x)^(3/2)*(2+3*x)^(1/2)/(1-2*x)^(3/2),x)

[Out]

-1/18*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*(67*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*Elliptic
F(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))-133*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/11*(
66+110*x)^(1/2),1/2*I*66^(1/2))-450*x^3+1140*x^2+1986*x+684)/(30*x^3+23*x^2-7*x-6)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (5 \, x + 3\right )}^{\frac{3}{2}} \sqrt{3 \, x + 2}}{{\left (-2 \, x + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(3/2)*(2+3*x)^(1/2)/(1-2*x)^(3/2),x, algorithm="maxima")

[Out]

integrate((5*x + 3)^(3/2)*sqrt(3*x + 2)/(-2*x + 1)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (5 \, x + 3\right )}^{\frac{3}{2}} \sqrt{3 \, x + 2} \sqrt{-2 \, x + 1}}{4 \, x^{2} - 4 \, x + 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(3/2)*(2+3*x)^(1/2)/(1-2*x)^(3/2),x, algorithm="fricas")

[Out]

integral((5*x + 3)^(3/2)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(4*x^2 - 4*x + 1), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)**(3/2)*(2+3*x)**(1/2)/(1-2*x)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (5 \, x + 3\right )}^{\frac{3}{2}} \sqrt{3 \, x + 2}}{{\left (-2 \, x + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(3/2)*(2+3*x)^(1/2)/(1-2*x)^(3/2),x, algorithm="giac")

[Out]

integrate((5*x + 3)^(3/2)*sqrt(3*x + 2)/(-2*x + 1)^(3/2), x)